
1

SYNPLAY: Synchronized Streaming Audio across
Multiple Receivers

David Hatch, Charles Proctor, and Sylvan Zheng

Abstract—This paper presents SYNPLAY, a protocol for syn-
chronizing audio playback across multiple clients on a network.
In the first stage of the protocol, multiple rounds of the Network
Time Protocol (NTP) are used to synchronize the system clock
offsets on the various receivers. After the system clocks have been
synchronized, audio is asynchronously streamed over UDP to all
the connected clients. Using the C PortAudio API, the received
music packets are played by the receiving system.

Keywords—clock synchronization, audio streaming, Network
Time Protocol (NTP), PortAudio C++ API, Boost::ASIO

I. INTRODUCTION

With the advent of highly available mobile devices and
streaming media, an easily accessible platform for music
streaming, sharing, and playback becomes more and more
desirable. This paper describes a system and protocol aimed at
consumer level devices connected over a network, subject to
the real-world constraints of network latency and system clock
variance.

Specifically, this paper presents a two-stage pipeline for
multiple receiver audio streaming:

1) Synchronize the system clocks across receivers using
multiple rounds of the Network Time Protocol (NTP).

2) Stream audio using custom synchronized streaming
protocol.

Given the accuracy required to synchronize audio across
multiple receivers, the choice of audio API and networking
library are of the utmost importance. Therefore, the first two
sections of this paper are devoted to these topics.

The paper then continues to describe the methodology
used to synchronize clocks and the synchronized streaming
audio protocol. Finally, the conclusion offers ideas for exciting
application of the protocol and system proposed.

II. CHOICE OF AUDIO API

The task of audio synchronization relies on the imple-
mentation’s ability to play music at a specified time. Given
that Java runs in the Java Virtual Machine (JVM), delay
between calling the corresponding write() method on the
SourceDataLine of the Java Sound API and the sound
outputting from the speakers presented an immediate concern.

To precisely determine the delay between Java Sound API
and the speakers, a listener / shouter pair were implemented
where:

• The shouter plays an impulse of 4 bytes of max value
(127), recording the time at which the impulse is sent.

• The listener listens for the impulse, thresholding out all
lower values. When the impulse is received, the time is
recorded.

Now, to effectively measure latency the two setups were
configured:

A. On a Dell XPS 13 Core i5 running Fedora 22, a
kernel-level ALSA audio loopback was configured to
direct audio from the output (speakers) to the input
(microphone), without ever touching the sound card.

B. On a 2011 MacBook Pro running OSX 10.10, a male-
to-male stereo audio cable was used to connect the
external speaker / headphone output port to the micro-
phone input port.

First, using the SourceDataLine of the Java Sound API,
the following measurements were obtained:

System Delay
A 20-120 ms
B 250-350 ms

Fig. 1. Delay using Java SourceDataLine

Unfortunately, for the task of audio synchronization, the
determined variation in delays using the Java Sound API are
unacceptable.

Although the delay is indeed large, that is theoretically a
value that can be determined. The true problem arises due to
the variation in delay. An unpredictable delay between the Java
Sound API and the system speaker output is unacceptable for
the task of audio synchronization.

After researching a series of cross-platform audio libraries,
the C++ PortAudio API arose as a promising option. The afore-
mentioned shouter and listener programs were re-implemented
in C++ using PortAudio and tested on the same systems. The
following results were obtained:

System Delay
A 2 ms
B 16-18 ms

Fig. 2. Delay using C++ PortAudio API

Obviously, these results trump those obtained using the Java
Sound API. Not only is the delay essentially negligible, the
round-trip variation is less than ±1 ms.

The design proposed throughout the remainder of this paper
has therefore been implemented in C++, using the PortAudio
API. The PortAudio API follows an asynchronous design
to ensure performance for real-time applications. All critical
audio processing takes place on a high-priority thread.



2

III. CHOICE OF NETWORKING API
Given the decision to implement the proposed system in

C++, the choice of networking library came next. Ultimately,
it was decided to use Boost::ASIO’s asynchronous network-
ing library for the following reasons:

• Cross-platform: There is no requirement for recipients
to use the same operating system.

• Asynchronous: Given the need to maintain multiple
connections at the same time, asynchronous networking
I/O was preferred.

• Well-documented: Obviously, an open-source and well-
documented networking library offers advantages over
the competitors.

The natural next consideration is to decide whether to build
this protocol over UDP or TCP. Obviously, the reliability and
ordering guarantees provided by TCP are highly desirable to
ease consistency in data, but ultimately the system proposed
uses UDP because of the following considerations:

• In a real time oriented system delivering streaming me-
dia, it is critical that packets are delivered as quickly as
possible. Even more importantly, they must be relatively
consistent. The network time synchronization protocol
(described in section IV), while not real time, requires
symmetric routing paths, which could be sabotaged by
TCP timeouts or retransmission.

• A streaming media protocol can also be easily designed
to be loss-resistant. Concurrently playing receivers can
mask the absence of data in others. The particular
protocol is described in section V.

• Devices connected to a local network often do not ex-
perience non-negligible packet losses, making the addi-
tional overhead of TCP processing largely unnecessary.

IV. CLOCK SYNCHRONIZATION USING NTP
A standard version of the Network Time Protocol (NTP) was

implemented. As described below, multiple rounds of NTP are
sent between the master and the client.

First, a description of one NTP round (a series of 2 round-
trips) is presented. Next, multiple rounds are performed and
average. The final section describes the methodology used to
ensure reliability, even after UDP packet loss.

A. One NTP Round
Clock synchronization using NTP relies on the following

equation:

θ = (t1 − t0) + (t2 − t3) (1)

where
• θ is the offset
• t0 is the the master’s sent time
• t1 is the the client’s received time
• t2 is the the client’s sent time
• t3 is the the master’s received time
assuming that we are synchronizing from the master to the

client.

Name Type
t0 from_sent uint64_t
t1 to_recvd uint64_t
t2 to_sent uint64_t
t3 from_recvd uint64_t
θ offset int64_t

Fig. 3. NTP Packet Fields

[width=50mm]

Fig. 4. Network Time Protocol (NTP)

To efficiently pass the aforementioned data between the
master and the client, NTP packets contain the following fields:

As displayed in Figure 4, to synchronize the clocks:
1) The master sends an NTP packet to all clients with t0

set to its current system time.
2) Upon receiving the first NTP packet, a client immedi-

ately sets t1 to its current system time, processes the
packet, sets t2 and responds to the master.

3) When the master receives the response from a client,
it sets t3 to its current system time and calculates the
offset θ using Equation 1. The master sends the offset
θ to the client.

4) When the client receives the second NTP packet (with
θ set to the offset, it stores the offset and immediately
responds with a final NTP packet (serving as an ac-
knowledgement).

5) When the master receives the final NTP response, the
connection has been established and clocks have been
synchronized.

B. Aggregating Multiple NTP Round-Trips
Initially, the system was built to send one NTP round (2

round-trips), where the client offset was immediately set to
the offset calculated.

After testing the implementation, it was quickly determined
that the first NTP calculation was often an outlier and therefore
not to be trusted alone. For example, between two MacBook
Pros (which are commonly synced within 10ms), initial offsets
were on the order of 100 ms.

The natural solution was to send multiple rounds of NTP
at the start of a connection. This system was implemented as
follows:
• 10 rounds of NTP are sent between the master and the

client.
• The client calculates the mean and standard deviation

for these ten offset samples.
• The client removes any samples outside of two standard

deviations from the mean.
• The client sets the host-client offset to the mean of this

cleaned set.



3

1 2 3 4 5 6 7 8 9 10

−140

−120

−100

−80

NTP Round #

O
ff

se
t

(m
s)

Fig. 5. NTP Offset by Round for Three Separate Runs

Three sample runs of 10 NTP rounds can be found in
Figure 5.

C. NTP Reliability
As soon as NTP packets are sent from the master, asyn-

chronous timers are initialized. If the timers execute before
the corresponding replies are received, the packets are resent.

V. SYNCHRONIZED STREAMING AUDIO PROTOCOL

The audio streaming protocol was designed and imple-
mented with the following goals in mind:

1) Send rate limiting correlated with the audio stream
2) Support for maintaining synchronization even in the

face of dropped packets or other network irregularities
The media stream is broken down into small packets, each

carrying a small chunk of the audio data. Each packet is
accompanied by a timestamp, indicating the millisecond time
of the master’s clock at which the audio data should be
played by the client. It is the client’s responsibility to use the
offset (calculated as described above) to convert this master
clock timestamp to the relevant local time. The fields can be
summarized as follows:

Name Type
timestamp uint64_t
payload int16_t

payload_size int32_t

Fig. 6. Media Packet Fields

Each packet as it is received is then placed into a double
ended buffer that is polled by the PortAudio callback function,
which generates frames of audio for the sound card. The
system calculates the expected play time of the current audio
buffer frame and compares it to the first packet in the queue’s
timestamp. If the queue is empty or if the packet at the front

of the queue is not ready to be played, zeroes are written to
the audio output channel. In this way, even if packets are lost
due to the lack of UDP reliability guarantees, audio remains
synchronized between different hosts.

The system synchronizes playback to millisecond level gran-
ularity; as such it is important to ensure accurate timestamp
reporting. To accomplish this a packet size that delineates
cleanly to millisecond boundaries was chosen; each packet
contains 441 frames of audio, or exactly 10ms.

In order to prevent buffer overflow on the receiver end it
is also important to limit the rate of packet sending. With the
fixed packet size described above it was sufficient to implement
a simple wait style rate limiting scheme. After the master has
successfully sent a packet to all of its clients, it waits for a
time proportional to the packet size (Experiments showed a
sleep value roughly equal to half the packet time, or 5ms to
be sufficient).

A. Integration with Port Audio API
The Port Audio API used by the client overlays platform-

specific audio APIs to provide a common interface. Serveral
functions are included which were fundemental to the client’s
synchronization abilities:
• Port Audio suggests a low latency buffer size for the

system audio API.
• Port Audio provides stream timestamps which correlate

to the playtime of a sample from the Digital-to-Analog
Converter (DAC), with known latency introduced by the
audio stack included.

To integrate with Port Audio, the client calculates an offset
between its operating system clock, and the port audio stream
clock. This offset is calculated when the NTP round is final-
ized. This provides an accurate translation from host to client
time, and then from client time to host time.

The DAC output time is used to support the streaming
protocol in providing accurate audio playback estimates.

VI. CONCLUSION AND FUTURE WORK

This paper describes a two-stage pipeline for audio-
synchronization across multiple recipients. In the first stage,
multiple rounds of NTP packets are sent to synchronize the
clocks on the various systems. In the second stage, a series of
media packets are streamed to the various recipients.

Submitted along with this paper was a complete imple-
mentation of the system in C++. It would obviously be
interesting to implement the design proposed on alternative
systems, especially those for mobile devices. For example,
since Objective-C and Swift interface naturally with C++ an
iOS implementation should prove relatively easy. Similarly,
implementations for Android or Windows Mobile would allow
mobile devices to receive and stream the audio sent from our
master.

Throughout the design of the protocol defined in this paper,
an important assumption has been made. The implementation
assumes that once two clocks have been synchronized at
the start of a piece of music, they will remain in sync



4

throughout the song. Obviously, this is not necessarily true.
In the phenomenon commonly known as drift, system clock
times can slowly separate, even after being synced at the
beginning. Future work in the area of audio synchronization
could work to maintain clock synchronization throughout
the performance of a piece of music, rather than just at
the beginning. Other interesting areas of exploration include:
splitting audio channels to different receivers, allowing for split
stereo playback; allowing clients to join mid-stream; applying
a smoothing function to lessen the audio artifacts caused by
dropped packets; implementing a master discovery protocol;
and allowing clients to request retransmission of dropped
packets that are still buffered by the master but have not yet
been played.

ACKNOWLEDGMENT

A special thanks to Yuchen Yang, Qiao Xiang, and Professor
Richard Y. Yang of the Yale University Computer Science
department for advising us on this project.

REFERENCES

• Bencina, ”Port Audio and Synchronization”


